

 Navigation

 	
 index

 	
 next |

 	PyCryptodome 3.3 documentation

Welcome to PyCryptodome’s documentation

	Introduction
	News

	PyCryptodome and PyCrypto

	Features

	Installation
	Linux Ubuntu

	Linux Fedora

	Windows (pre-compiled)

	Windows (from sources, Python 2.x, Python <=3.2)

	Windows (from sources, Python 3.3 and 3.4)

	Windows (from sources, Python 3.5 and newer)

	API documentation

	Examples
	Encrypt data with AES

	Generate an RSA key

	Encrypt data with RSA

	Contribute and support

	Future plans

	Changelog
	3.3 (29 October 2015)

	3.2.1 (9 September 2015)

	3.2 (6 September 2015)

	3.1 (15 March 2015)

	3.0 (24 June 2014)

	License
	Public domain

	BSD license

	OCB license

	MPIR license

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

Introduction

PyCryptodome is a self-contained, public domain Python package of low-level
cryptographic primitives.

It supports Python 2.4 or newer, all Python 3 versions and PyPy.

All the code can be downloaded from GitHub [https://github.com/Legrandin/pycryptodome].

PyCryptodome is not a wrapper to a separate C library like OpenSSL.
To the largest possible extent, algorithms are implemented in pure Python.
Only the pieces that are extremely critical to performance (e.g. block ciphers)
are implemented as C extensions.

News

	29 Oct 2015 (NEW). Release 3.3.

	9 Sep 2015. Minor release 3.2.1.

	6 Sep 2015. Release 3.2.

	15 Mar 2015. Release 3.1.

	24 Jun 2014. Release 3.0.

PyCryptodome and PyCrypto

PyCryptodome is a fork of the PyCrypto [https://www.dlitz.net/software/pycrypto] project.

It brings the following enhancements with respect to the last official version of PyCrypto (2.6.1):

	Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB)

	Accelerated AES on Intel platforms via AES-NI

	First class support for PyPy

	SHA-3 (including SHAKE XOFs) and BLAKE2 hash algorithms

	Salsa20 stream cipher

	scrypt and HKDF

	Deterministic DSA

	Password-protected PKCS#8 key containers

	Shamir’s Secret Sharing scheme

	Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace)

	Simplified install process, including better support for Windows

	FIPS 186-4 compliant RSA key generation

	Major clean ups and simplification of the code base

The fork took place because of the very bad state PyCrypto was in,
and the little maintanance it was receiving.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

Features

This page lists the low-level primitives that PyCryptodome provides.

You are expected to have a solid understanding of cryptography and security
engineering to successfully use them.

You must also be able to recognize that some primitives are obsolete (e.g. TDES)
or even unsecure (RC4). They are provided only to enable backward compatibility
where required by the applications.

A list of useful resources in that area can be found on Matthew Green’s blog [http://blog.cryptographyengineering.com/p/useful-cryptography-resources.html].

	Symmetric ciphers:
	AES

	Single and Triple DES

	CAST-128

	RC2

	Traditional modes of operations for symmetric ciphers:
	ECB

	CBC

	CFB

	OFB

	CTR

	OpenPGP (a variant of CFB, RFC4880)

	AEAD modes of operations for symmetric ciphers:
	CCM (AES only)

	EAX

	GCM (AES only)

	SIV (AES only)

	OCB (AES only)

	Stream ciphers:
	Salsa20

	ChaCha20

	RC4

	Cryptographic hashes:
	SHA-1

	SHA-2 family (224, 256, 384, 512)

	SHA-3 family (224, 256, 384, 512)

	BLAKE2b and BLAKE2s

	RIPE-MD160

	MD5

	Message Authentication Codes (MAC):
	HMAC

	CMAC

	Asymmetric key generation:
	RSA

	DSA

	ElGamal

	Export and import format for asymmetric keys:
	PEM (clear and encrypted)

	PKCS#8 (clear and encrypted)

	ASN.1 DER

	Asymmetric ciphers:
	PKCS#1 (RSA)
	RSAES-PKCS1-v1_5

	RSAES-OAEP

	Asymmtric digital signatures:
	PKCS#1 (RSA)
	RSASSA-PKCS1-v1_5

	RSASSA-PSS

	DSA
	FIPS 186-3

	Deterministic (RFC6979)

	Key derivation:
	PBKDF1

	PBKDF2

	scrypt

	HKDF

	Other cryptographic protocols:
	Shamir Secret Sharing

	Padding
	PKCS#7

	ISO-7816

	X.923

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

Installation

The procedures below all perform the same actions:

	Install virtualenv and pip

	Create a virtual environment

	Download PyCryptodome from pypi [https://pypi.python.org/pypi/pycryptodome]

	(In Unix only) Compile the C extensions of PyCryptodome

	Install PyCryptodome in the virtual environment

	Run the test suite to verify that all algorithms work correctly

Note

PyCryptodome resides in the same namespace of PyCrypto (Crypto).
In order to avoid any possible conflict, these instructions do not
install PyCryptodome at the system level.

Linux Ubuntu

For Python 2.x:

$ sudo apt-get install build-essential libgmp3c2
$ sudo apt-get install python-virtualenv python-dev
$ virtualenv -p /usr/bin/python2 MyProject
$ cd MyProject
$. bin/activate
$ pip install pycryptodome
$ python -m Crypto.SelfTest

For Python 3.x:

$ sudo apt-get install build-essential libgmp3c2
$ sudo apt-get install python-virtualenv python3-dev
$ virtualenv -p /usr/bin/python3 MyProject
$ cd MyProject
$. bin/activate
$ pip install pycryptodome
$ python3 -m Crypto.SelfTest

For PyPy:

$ sudo apt-get install build-essential libgmp3c2
$ sudo apt-get install python-virtualenv pypy-dev
$ virtualenv -p /usr/bin/pypy MyProject
$ cd MyProject
$. bin/activate
$ pip install pycryptodome
$ pypy -m Crypto.SelfTest

Linux Fedora

For Python 2.x:

$ sudo yum install gcc gmp
$ sudo yum install python-virtualenv python-devel
$ virtualenv -p /usr/bin/python2 MyProject
$ cd MyProject
$. bin/activate
$ pip install pycryptodome
$ python -m Crypto.SelfTest

For Python 3.x:

$ sudo yum install gcc gmp
$ sudo yum install python3-virtualenv python3-devel
$ virtualenv -p /usr/bin/python3 MyProject
$ cd MyProject
$. bin/activate
$ pip install pycryptodome
$ python3 -m Crypto.SelfTest

For PyPy:

$ sudo yum install gcc gmp
$ sudo yum install python-virtualenv pypy-devel
$ virtualenv -p /usr/bin/pypy MyProject
$ cd MyProject
$. bin/activate
$ pip install pycryptodome
$ pypy -m Crypto.SelfTest

Windows (pre-compiled)

	Make sure that the PATH environment variable contains
the directory of your Python interpreter and its subdirectory Scripts.

Typically, that means typing something like this
at the command prompt:

> set PATH=%PATH%;C:\Python27;C:\Python27\Scripts

or:

> set PATH=%PATH%;C:\Python34;C:\Python34\Scripts

	[Only once. Skip if you have Python 3.4 or newer]
Install pip by downloading and executing the Python
script get-pip.py [https://bootstrap.pypa.io/get-pip.py]:

> python get-pip.py

	[Only once] Install virtualenv with:

> pip install virtualenv

	Create a virtual environment for your project:

> cd %USERPROFILE%
> virtualenv MyProject
> cd MyProject
> Scripts\activate

	Install PyCryptodome as a wheel [http://pythonwheels.com/]:

> pip install pycryptodome

	To make sure everything works fine, run the test suite:

> python -m Crypto.SelfTest

Windows (from sources, Python 2.x, Python <=3.2)

Windows does not come with a C compiler like most Unix systems.
The simplest way to compile the Pycryptodome extensions from
source code is to install the minimum set of Visual Studio
components freely made available by Microsoft.

	Ensure you have pip and virtualenv installed (see previous section).

	Run Python from the command line and note down its version
and whether it is a 32 bit or a 64 bit application.

For instance, if you see:

Python 2.7.2+ ... [MSC v.1500 32 bit (Intel)] on win32

you clearly have Python 2.7 and it is a 32 bit application.

	[Only once] In order to speed up asymmetric key algorithms like RSA,
it is recommended to install the MPIR [http://mpir.org] library (a fork of the popular
GMP [http://gmplib.org] library, more suitable for the Windows environment).
For convenience, I made available pre-compiled mpir.dll files to match
the various types of Python one may have:

	Python 2.x, 3.1, 3.2 (VS2008 runtime)
	32 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2008_32/mpir.dll]

	64 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2008_64/mpir.dll]

	Python 3.3 and 3.4 (VS2010 runtime)
	32 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2010_32/mpir.dll]

	64 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2010_64/mpir.dll]

	Python 3.5 (VS2015 runtime)
	32 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2015_32/mpir.dll]

	64 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2015_64/mpir.dll]

Download the correct mpir.dll and drop it into the Python interpreter
directory (for instance C:\Python34). Pycryptodome will
automatically make use of it.

	[Only once] Install Virtual Clone Drive [http://www.slysoft.com/it/virtual-clonedrive.html].

	[Only once] Download the ISO image of the `MS SDK for Windows 7 and . NET Framework 3.5 SP1`_.
It contains the Visual C++ 2008 compiler.

There are three ISO images available: you will need GRMSDK_EN_DVD.iso if your
Windows OS is 32 bits or GRMSDKX_EN_DVD.iso if 64 bits.

Mount the ISO with Virtual Clone Drive and install the C/C++ compilers and the
redistributable only.

	If your Python is a 64 bit application, open a command prompt and perform the following steps:

> cd "C:\Program Files\Microsoft SDKs\Windows\v7.0"
> cmd /V:ON /K Bin\SetEnv.Cmd /x64 /release
> set DISTUTILS_USE_SDK=1

Replace /x64 with /x86 if your Python is a 32 bit application.

	Enter the virtual environment for your project:

> cd %USERPROFILE%
> cd MyProject
> Scripts\activate

	Compile and install PyCryptodome:

> pip install pycryptodome --no-use-wheel

	To make sure everything work fine, run the test suite:

> python -m Crypto.SelfTest

Windows (from sources, Python 3.3 and 3.4)

Windows does not come with a C compiler like most Unix systems.
The simplest way to compile the Pycryptodome extensions from
source code is to install the minimum set of Visual Studio
components freely made available by Microsoft.

	Ensure you have pip and virtualenv installed (see previous section).

	Run Python from the command line and note down its version
and whether it is a 32 bit or a 64 bit application.

For instance, if you see:

Python 2.7.2+ ... [MSC v.1500 32 bit (Intel)] on win32

you clearly have Python 2.7 and it is a 32 bit application.

	[Only once] In order to speed up asymmetric key algorithms like RSA,
it is recommended to install the MPIR [http://mpir.org] library (a fork of the popular
GMP [http://gmplib.org] library, more suitable for the Windows environment).
For convenience, I made available pre-compiled mpir.dll files to match
the various types of Python one may have:

	Python 2.x, 3.1, 3.2 (VS2008 runtime)
	32 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2008_32/mpir.dll]

	64 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2008_64/mpir.dll]

	Python 3.3 and 3.4 (VS2010 runtime)
	32 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2010_32/mpir.dll]

	64 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2010_64/mpir.dll]

	Python 3.5 (VS2015 runtime)
	32 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2015_32/mpir.dll]

	64 bits [https://github.com/Legrandin/mpir-windows-builds/blob/master/mpir-2.6.0_VS2015_64/mpir.dll]

Download the correct mpir.dll and drop it into the Python interpreter
directory (for instance C:\Python34). Pycryptodome will
automatically make use of it.

	[Only once] Install Virtual Clone Drive [http://www.slysoft.com/it/virtual-clonedrive.html].

	[Only once] Download the ISO image of the `MS SDK for Windows 7 and . NET Framework 4`_.
It contains the Visual C++ 2010 compiler.

There are three ISO images available: you will need GRMSDK_EN_DVD.iso if your
Windows OS is 32 bits or GRMSDKX_EN_DVD.iso if 64 bits.

Mount the ISO with Virtual Clone Drive and install the C/C++ compilers and the
redistributable only.

	If your Python is a 64 bit application, open a command prompt and perform the following steps:

> cd "C:\Program Files\Microsoft SDKs\Windows\v7.1"
> cmd /V:ON /K Bin\SetEnv.Cmd /x64 /release
> set DISTUTILS_USE_SDK=1

Replace /x64 with /x86 if your Python is a 32 bit application.

	Enter the virtual environment for your project:

> cd %USERPROFILE%
> cd MyProject
> Scripts\activate

	Compile and install PyCryptodome:

> pip install pycryptodome --no-use-wheel

	To make sure everything work fine, run the test suite:

> python -m Crypto.SelfTest

Windows (from sources, Python 3.5 and newer)

Windows does not come with a C compiler like most Unix systems.
The simplest way to compile the Pycryptodome extensions from
source code is to install the minimum set of Visual Studio
components freely made available by Microsoft.

	[Once only] Download MS Visual Studio 2015 [https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx] (Community Edition) and install the C/C++
compilers and the redistributable only.

	Perform all steps from the section Windows (pre-compiled) but add the --no-use-wheel
parameter when calling pip:

> pip install pycryptodome --no-use-wheel

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

API documentation

The API can be found here [http://legrandin.github.com/pycryptodome].
Soon it will be moved on these pages.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

Examples

Encrypt data with AES

The following code generates a new AES128 key and encrypts a piece of data into a file.
We use the EAX mode [http://en.wikipedia.org/wiki/EAX_mode] because it allows the receiver to detect any
unauthorized modification (similarly, we could have used other authenticated
encryption modes [http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html] like GCM [http://en.wikipedia.org/wiki/GCM_mode], CCM [http://en.wikipedia.org/wiki/CCM_mode] or SIV [http://tools.ietf.org/html/rfc5297]).

from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes

file_out = open("encrypted.bin", "wb")
key = get_random_bytes(16)
nonce = get_random_bytes(16)
cipher = AES.new(key, AES.MODE_EAX, nonce)
ciphertext, tag = cipher.encrypt_and_digest(data)
[file_out.write(x) for x in (nonce, tag, ciphertext)]

At the other end, the receiver can securely load the piece of data back (if they know the key!).
Note that the code generates a ValueError exception when tampering is detected.

from Crypto.Cipher import AES

file_in = open("encrypted.bin", "rb")
nonce, tag, ciphertext = [file_in.read(x) for x in (16, 16, -1)]
let's assume that the key is somehow available again
cipher = AES.new(key, AES.MODE_EAX, nonce)
data = cipher.decrypt_and_verify(ciphertext, tag)

Generate an RSA key

The following code generates a new RSA key pair (secret) and saves it into a file, protected by a password.
We use the scrypt [http://it.wikipedia.org/wiki/Scrypt] key derivation function to thwart dictionary attacks.
At the end, the code prints our the RSA public key in ASCII/PEM format:

from Crypto.PublicKey import RSA

secret_code = "Unguessable"
key = RSA.generate(2048)
file_out = open("rsa_key.bin", "wb")
encrypted_key = key.exportKey(passphrase=secret_code, pkcs=8,
 protection="scryptAndAES128-CBC")
file_out.write(encrypted_key)

print key.publickey().exportKey()

The following code reads the private RSA key back in, and then prints again the public key:

from Crypto.PublicKey import RSA

secret_code = "Unguessable"
file_in = open("rsa_key.bin", "rb")
key = RSA.importKey(file_in.read(), passphrase=secret_code)

print key.publickey().exportKey()

Encrypt data with RSA

The following code encrypts a piece of data for a receiver we have the RSA public key of.
The RSA public key is stored in a file called receiver.pem.

Since we want to be able to encrypt an arbitrary amount of data, we use a hybrid encryption scheme.
We use RSA with PKCS#1 OAEP [http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding] for asymmetric encryption of an AES session key.
The session key can then be used to encrypt all the actual data.

As in the first example, we use the EAX mode to allow detection of unauthorized modifications.

from Crypto.PublicKey import RSA
from Crypto.Random import get_random_bytes
from Crypto.Cipher import AES, PKCS1_OAEP

file_out = open("encrypted_data.bin", "wb")

recipient_key = RSA.importKey(open("receiver.pem").read())
session_key = get_random_bytes(16)
nonce = get_random_bytes(16)

Encrypt the session key with the public RSA key
cipher_rsa = PKCS1_OAEP.new(recipient_key)
file_out.write(cipher_rsa.encrypt(session_key))

Encrypt the data with the AES session key
cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce)
ciphertext, tag = cipher_aes.encrypt_and_digest(data)
[file_out.write(x) for x in (nonce, tag, ciphertext)]

The receiver has the private RSA key. They will use it to decrypt the session key
first, and with that the rest of the file:

from Crypto.PublicKey import RSA
from Crypto.Cipher import AES, PKCS1_OAEP
import math

file_in = open("encrypted_data.bin", "rb")

private_key = RSA.importKey(open("private.pem").read())
rsa_size = ceil(private_key.size()/8.0)

enc_session_key, nonce, tag, ciphertext = \
 [file_in.read(x) for x in (rsa_size, 16, 16, -1)]

Decrypt the session key with the public RSA key
cipher_rsa = PKCS1_OAEP.new(private_key)
session_key = cipher_rsa.decrypt(enc_session_key)

Decrypt the data with the AES session key
cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce)
data = cipher.decrypt_and_verify(ciphertext, tag)

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

Contribute and support

	Do not be afraid to contribute with small and apparently insignificant
improvements like correction to typos. Every change counts.

	Read carefully the License of PyCryptodome. By submitting your code,
you acknowledge that you accept to release it according to the BSD 2-clause license [http://opensource.org/licenses/BSD-2-Clause].

	You must disclaim which parts of your code in your contribution were partially
copied or derived from an existing source. Ensure that the original is licensed
in a way compatible to the BSD 2-clause license.

	You can propose changes in any way you find most convenient.
However, the preferred approach is to:
	Clone the main repository on GitHub [https://github.com/Legrandin/pycryptodome].

	Create a branch and modify the code.

	Send a pull request [https://help.github.com/articles/using-pull-requests] upstream with a meaningful description.

	Provide tests (in Crypto.SelfTest) along with code. If you fix a bug
add a test that fails in the current version and passes with your change.

	If your change breaks backward compatibility, hightlight it and include
a justification.

	Ensure that your code complies to PEP8 [http://www.python.org/dev/peps/pep-0008/] and PEP257 [http://legacy.python.org/dev/peps/pep-0257/].

	Ensure that your code does not use constructs or includes modules not
present in Python 2.4 [http://rgruet.free.fr/PQR24/PQR2.4.html].

	Add a short summary of the change to the file Changelog.rst.

	Add your name to the list of contributors in the file AUTHORS.rst.

The PyCryptodome mailing list is hosted on Google Groups [https://groups.google.com/forum/#!forum/pycryptodome].
You can mail any comment or question to pycryptodome@googlegroups.com.

Bug reports can be filed on the GitHub tracker [https://github.com/Legrandin/pycryptodome/issues].

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

Future plans

Future releases will include:

	Break-up test cases of ciphers and make them mode-specific

	Make all hash objects non-copiable and immutable after the first digest

	Automatic IV/nonce generation for cipher modes

	Move API documentation from epydoc to sphinx

	Implement AES with bitslicing

	Move old ciphers into a Museum submodule

	
	Add algorithms:

	
	Poly1305

	Elliptic Curves (ECDSA, ECIES, ECDH)

	Camellia, GOST

	Diffie-Hellman

	bcrypt

	SRP

	
	Add more key management:

	
	Export/import of EC keys

	Export/import of DSA domain parameters

	JWK

	Add support for CMS/PKCS#7

	Add support for RNG backed by PKCS#11 and/or KMIP

	Add support for Format-Preserving Encryption

	Add the complete set of NIST test vectors for the various algorithms

	Remove dependency on libtomcrypto headers

	Speed up (T)DES with a bitsliced implementation

	Add support for PCLMULQDQ in AES-GCM

	Coverage testing

	Run lint on the C code

	Add (minimal) support for PGP

	Add (minimal) support for PKIX / X.509

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCryptodome 3.3 documentation

Changelog

3.3 (29 October 2015)

New features

	Windows wheels bundle the MPIR library

	Detection of faults occuring during secret RSA operations

	Detection of non-prime (weak) q value in DSA domain parameters

	Added original Keccak hash family (b=1600 only).
In the process, simplified the C code base for SHA-3.

	Added SHAKE128 and SHAKE256 (of SHA-3 family)

Resolved issues

	GH#3: gcc 4.4.7 unhappy about double typedef

Breaks in compatibility

	Removed method copy from all SHA-3 hashes

	Removed ability to update a SHA-3 hash after the first call to (hex)digest

3.2.1 (9 September 2015)

New features

	Windows wheels are automatically built on Appveyor

3.2 (6 September 2015)

New features

	Added hash functions BLAKE2b and BLAKE2s.

	Added stream cipher ChaCha20.

	Added OCB cipher mode.

	CMAC raises an exception whenever the message length is found to be
too large and the chance of collisions not negligeable.

	New attribute oid for Hash objects with ASN.1 Object ID

	Added Crypto.Signature.pss and Crypto.Signature.pkcs1_15

	Added NIST test vectors (roughly 1200) for PKCS#1 v1.5 and PSS signatures.

Resolved issues

	tomcrypt_macros.h asm error #1

Breaks in compatibility

	Removed keyword verify_x509_cert from module method importKey (RSA and DSA).

	Reverted to original PyCrypto behavior of method verify in PKCS1_v1_5
and PKCS1_PSS.

3.1 (15 March 2015)

New features

	Speed up execution of Public Key algorithms on PyPy, when backed
by the Gnu Multiprecision (GMP) library.

	GMP headers and static libraries are not required anymore at the time
PyCryptodome is built. Instead, the code will automatically use the
GMP dynamic library (.so/.DLL) if found in the system at runtime.

	Reduced the amount of C code by almost 40% (4700 lines).
Modularized and simplified all code (C and Python) related to block ciphers.
Pycryptodome is now free of CPython extensions.

	Add support for CI in Windows via Appveyor.

	RSA and DSA key generation more closely follows FIPS 186-4 (though it is
not 100% compliant).

Resolved issues

	None

Breaks in compatibility

	New dependency on ctypes with Python 2.4.

	The counter parameter of a CTR mode cipher must be generated via
Crypto.Util.Counter. It cannot be a generic callable anymore.

	Removed the Crypto.Random.Fortuna package (due to lack of test vectors).

	Removed the Crypto.Hash.new function.

	The allow_wraparound parameter of Crypto.Util.Counter is ignored.
An exception is always generated if the counter is reused.

	DSA.generate, RSA.generate and ElGamal.generate do not
accept the progress_func parameter anymore.

	Removed Crypto.PublicKey.RSA.RSAImplementation.

	Removed Crypto.PublicKey.DSA.DSAImplementation.

	Removed ambiguous method size() from RSA, DSA and ElGamal keys.

3.0 (24 June 2014)

New features

	Initial support for PyPy.

	SHA-3 hash family based on the April 2014 draft of FIPS 202.
See modules Crypto.Hash.SHA3_224/256/384/512.
Initial Keccak patch by Fabrizio Tarizzo.

	Salsa20 stream cipher. See module Crypto.Cipher.Salsa20.
Patch by Fabrizio Tarizzo.

	Colin Percival’s scrypt key derivation function (Crypto.Protocol.KDF.scrypt).

	Proper interface to FIPS 186-3 DSA. See module Crypto.Signature.DSS.

	Deterministic DSA (RFC6979). Again, see Crypto.Signature.DSS.

	HMAC-based Extract-and-Expand key derivation function
(Crypto.Protocol.KDF.HKDF, RFC5869).

	Shamir’s Secret Sharing protocol, compatible with ssss (128 bits only).
See module Crypto.Protocol.SecretSharing.

	Ability to generate a DSA key given the domain parameters.

	Ability to test installation with a simple python -m Crypto.SelfTest.

Resolved issues

	LP#1193521: mpz_powm_sec() (and Python) crashed when modulus was odd.

	Benchmarks work again (they broke when ECB stopped working if
an IV was passed. Patch by Richard Mitchell.

	LP#1178485: removed some catch-all exception handlers.
Patch by Richard Mitchell.

	LP#1209399: Removal of Python wrappers caused HMAC to silently
produce the wrong data with SHA-2 algorithms.

	LP#1279231: remove dead code that does nothing in SHA-2 hashes.
Patch by Richard Mitchell.

	LP#1327081: AESNI code accesses memory beyond buffer end.

	Stricter checks on ciphertext and plaintext size for textbook RSA
(kudos to sharego).

Breaks in compatibility

	Removed support for Python < 2.4.

	Removed the following methods from all 3 public key object types (RSA, DSA, ElGamal):

	sign

	verify

	encrypt

	decrypt

	blind

	unblind

	can_encrypt

	can_sign

Code that uses such methods is doomed anyway. It should be fixed ASAP to
use the algorithms available in Crypto.Signature and Crypto.Cipher.

	The 3 public key object types (RSA, DSA, ElGamal) are now unpickable.

	Symmetric ciphers do not have a default mode anymore (used to be ECB).
An expression like AES.new(key) will now fail. If ECB is the desired mode,
one has to explicitly use AES.new(key, AES.MODE_ECB).

	Unsuccessful verification of a signature will now raise an exception [reverted in 3.2].

	Removed the Crypto.Random.OSRNG package.

	Removed the Crypto.Util.winrandom module.

	Removed the Crypto.Random.randpool module.

	Removed the Crypto.Cipher.XOR module.

	Removed the Crypto.Protocol.AllOrNothing module.

	Removed the Crypto.Protocol.Chaffing module.

	Removed the parameters disabled_shortcut and overflow from Crypto.Util.Counter.new.

Other changes

	Crypto.Random stops being a userspace CSPRNG. It is now a pure wrapper over os.urandom.

	Added certain resistance against side-channel attacks for GHASH (GCM) and DSA.

	More test vectors for HMAC-RIPEMD-160.

	Update libtomcrypt headers and code to v1.17 (kudos to Richard Mitchell).

	RSA and DSA keys are checked for consistency as they are imported.

	Simplified build process by removing autoconf.

	Speed optimization to PBKDF2.

	Add support for MSVC.

	Replaced HMAC code with a BSD implementation. Clarified that starting from the fork,
all contributions are released under the BSD license.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	PyCryptodome 3.3 documentation

License

The source code in PyCryptodome is partially in the public domain
and partially released under the BSD 2-Clause license.

In either case, there are minimal if no restrictions on the redistribution,
modification and usage of the software.

Public domain

All code originating from PyCrypto is free and unencumbered software
released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.

In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <http://unlicense.org>

BSD license

All direct contributions to PyCryptodome are released under the following
license. The copyright of each piece belongs to the respective author.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OCB license

The OCB cipher mode is patended in US. The directory Doc/ocb contains three
free licenses for implementors and users. As a general statement, OCB can be
freely used for software not meant for military purposes. Contact your attorney
for further information.

MPIR license

When distributed as a Windows wheel, Pycryptodome bundles an unmodified,
binary version of the MPIR library (https:\www.mpir.org) which is licensed
under the LGPLv3, a copy of which is available under Doc/mpir.

 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	PyCryptodome 3.3 documentation

Index

 Created using Sphinx 1.3.1.

 _static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		PyCryptodome 3.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.3.1.

